A Framework for Automatic Tool Selection in Integrated CAPP for Sheet Metal Bending

T. H. M. Nguyen^a, J. R. Duflou^b and J.-P. Kruth^c

Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300B, 3001-Leuven, Belgium

^aThiHongMinh.Nguyen@mech.kuleuven.ac.be, ^bJoost.Duflou@mech.kuleuven.ac.be, ^cJean-Pierre.kruth@mech.kuleuven.ac.be

Keywords: CAPP, sheet metal bending, tool selection

Abstract. Sheet metal bending is a metal forming process, in which flat sheets are bent along straight bend lines in a specific bending sequence to form three-dimensional parts. A large number of tools with different characteristics can be used in this process. The task to choose the right tooling for a requested sheet metal part is however one of the bottle necks in process planning. An inefficient tool selection may result in failure of finding a feasible bending sequence. In previous work, methodologies for tool selection and optimization have been proposed. The presented paper describes a framework to implement these methodologies into a system that allows automatic tool selection in consistent consideration of bend sequencing. As a result, automated and optimized tool selection for sheet metal bending is achieved, as illustrated by performance test results for a robust software implementation.