Sheet Thinning Prediction in Single Point Incremental Forming

G. Ambrogio^{1,a}, L. Filice^{1,b}, F. Gagliardi^{1,c} and F. Micari^{2,d}

¹Department of Mechanical Engineering, University of Calabria, 87036 Rende - Italy

Keywords: sheet metal process, FEM analysis, incremental forming

Abstract. Incremental forming processes are characterized by a well known and particular feature: any deformation across the sheet plane determines sheet thinning, since the blank is fully clamped by means of a proper equipment. As a consequence, the availability of effective and reliable CAE tools capable to supply an accurate prediction of sheet thinning as a function of process parameters, represents a strong requirement for a wider practical application of incremental forming.

The already available theoretical models (i.e. the sine law) do not provide, on the other hand, satisfactory results. Therefore in the paper a couple of numerical analysis strategies was applied to simulate simple incremental forming processes, as well as a proper experimental equipment was developed to verify the accuracy of the numerical predictions.

²Department of Mechanical Technology, Production and Management Engineering, University of Palermo, 90100 Palermo – Italy

^ag.ambrogio@unical.it, ^bl.filice@unical.it, ^cf.gagliardi@unical.it, ^dmicari@dtpm.unipa.it