

New Approach for Process Planning and Optimization in Sheet Metal Spinning

R. Göbel^{1,a}, M. Kleiner^{1,b} and N. Henkenjohann^{2,c}

¹University of Dortmund, Institute of Forming Technology and Lightweight Construction,
Baroper Str. 301, 44227 Dortmund, Germany

² University of Dortmund, Department of Statistics, Vogelpothsweg 87, 44221 Dortmund

^aRoland.Goebel@iul.uni-dortmund.de, ^bMatthias.Kleiner@iul.uni-dortmund.de,
^chenkenjo@statistik.uni-dortmund.de

Keywords: spinning, planning, optimization

Abstract. Due to the high complexity and the large number of possible geometries to be formed, a systematic design of the sheet metal spinning process is, up to now, difficult and time consuming. Sustainable models of the spinning process do not exist so far. Due to this, a new approach for the systematic design and optimization of the spinning process has been developed. In a first step of the planning sequence, a prediction of initial parameter settings is given by a case-based-reasoning approach. A first adaptation of the pre-selected parameters is then realized on a fuzzy-based model. In the next step, a model based optimization using statistical design of experiments is performed. For this, a new statistical approach has been developed being optimized regarding the requirements of the spinning process. In this paper, the methods used and the implementation of the approach in a process planning software are described. The approach is verified by the example of setting up a process to manufacture a cylindrical model workpiece.